8049 reflections	Scattering factors from
518 parameters	International Tables for
H atoms: see below	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o^2) + (0.0808P)^2]$	
where $P = (F_0^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Ni - P2 Ni - P1 Ni - S2 Ni - S1 CI - O1 CI - O4 CI - O2 CI - O3 S1 - C29 S2 - C29	2.1932 (8) 2.1945 (7) 2.2075 (8) 2.2089 (8) 1.373 (4) 1.391 (5) 1.392 (3) 1.406 (3) 1.717 (3) 1.707 (3)	P1C13 P1C19 P1 C28 P2C1 P2C7 P2C25 NC29 NC30 NC32	1.819 (3) 1.821 (3) 1.852 (3) 1.816 (3) 1.821 (3) 1.836 (3) 1.305 (4) 1.475 (5) 1.490 (5)
P2—Ni—P1 S2—Ni—S1 C29—S1—Ni C29—S2—Ni C26—C25—P2 C25—C26—C27	95.12 (3) 78.38 (3) 85.74 (10) 86.02 (10) 115.0 (3) 115.1 (3)	C26—C27—C28 C27—C28—P1 N—C29—S2 N—C29—S1 S2—C29—S1	115.4 (3) 115.7 (2) 123.5 (3) 127.2 (2) 109.21 (1)

In one of the ethyl substituents of the dithiocarbamate, disorder was observed with respect to the C31 atom; two positions, C31A and C31B, were assigned site occupancies of 0.5. All the H atoms of the alkyl substituents were added with the HADD utility of SHELXTL/PC (Sheldrick, 1990). The two H atoms attached to C30 appear as four H atoms with equal site occupancies; the three terminal H atoms attached to C31A/C31B were included in six positions. Other H atoms were identified from the Fourier map and were refined isotropically.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grants 09-02-05-6034 and 09-02-05-6024. KR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1521). Services for accessing these data are described at the back of the journal.

References

- Akilan, R., Sivakumar, K., Venkatachalam, V., Ramalingam, K., Chinnakali, K. & Fun, H.-K. (1995). Acta Cryst. C51, 368–370.
- Bonamico, M., Dessy, G., Mariani, C., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. C19, 619–626.
- Burns, R. P., McCullough, F. P. & McAuliffe, C. A. (1980). Adv. Inorg. Chem. Radiochem. 23, 211-218.
- Lachenal, D. (1975). Inorg. Nucl. Chem. Lett. 11, 101-106.
- McCleverty, J. A. & Morrison, N. J. (1976). J. Chem. Soc. Dalton Trans. pp. 541-547.
- Manohar, A., Venkatachalam, V., Ramalingam, K., Casellato, U. & Graziani, R. (1997). Polyhedron, 16, 1971–1977.
- Maxfield, P. L. (1970). Inorg. Nucl. Chem. Lett. 6, 693-696.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved Nardelli, M. (1983). Comput. Chem. 7, 95-98.

- Ramalingam, K., Aravamudan, G. & Seshasayee, M. (1987). Inorg. Chim. Acta, 128, 231-237.
- Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Venkatachalam, V., Ramalingam, K., Bocelli, G. & Cantoni, A. (1997). Inorg. Chim. Acta, 257, 49–58.

Acta Cryst. (1998). C54, 1225-1229

Bis(thiourea)cadmium Halides

CELIA MARCOS,^a JOSÉ M. ALÍA,^b VICTOR ADOVASIO,^c MANUEL PRIETO^a AND SANTIAGO GARCÍA-GRANDA^d

^aDepartamento de Geología & Instituto de Organometálica ^{'Enrique Moles', Facultad de Geología, Universidad de Oviedo, Cl. Jesús Arias de Velasco s/n, 33005 Oviedo, Spain, ^bDepartamento de Química Física, EUITA, Universidad de Castilla–La Mancha, Ronda de Calatrava 5, 13071 Ciudad Real, Spain, ^cDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, 1-43100 Parma, Italy, and ^dDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda Julián Clavería, 8, 33006 Oviedo, Spain. E-mail: sgg@sauron.química.uniovi.es}

(Received 30 September 1997; accepted 20 March 1998)

Abstract

The crystals of dichlorobis(thiourea-S)cadmium, [Cd- $Cl_2{SC(NH_2)_2}_2$, (I), and dibromobis(thiourea-S)cadmium, $[CdBr_2{SC(NH_2)_2}_2]$, (II), are orthorhombic (Pmn2₁ and Pnam, respectively), while those of diiodobis(thiourea-S)cadmium, $[CdI_2{SC(NH_2)_2}_2]$, (III), are monoclinic $(P2_1/c)$. In all these compounds, two S atoms from two thiourea molecules and two X (X =halogen) atoms coordinate to Cd in tetrahedral arrangements. Crystal packing is mainly determined by N- $H \cdot \cdot X$ hydrogen bonds, but is different in all three cases. The average Cd—X distance increases from 2.541(1) Å in (I) to 2.655 (3) Å in (II) and 2.782 (1) Å in (III), whereas the average Cd-S distances in the three compounds are quite similar, their values being 2.517(1), 2.522 (2) and 2.526 (2) Å, for (I), (II) and (III), respectively.

Comment

Thiourea is a chemically interesting ligand that has been widely studied [there are more than 700 structures of metal-thiourea complexes in the August 1997 release of the Cambridge Structural Database (CSD; Allen *et al.*, 1991)] and its complexes with transition metals exhibit interesting properties. Bis(thiourea) compounds of cadmium halides are useful for obtaining cadmium sulfide for photovoltaic batteries by thermic decomposition at a moderate temperature (573 or 673 K) and in air atmosphere (Stoev & Ruseva, 1994).

The present investigation of the title compounds (I) (II) and (III) was undertaken with the purpose of studying the influence of the size of the halide ion on the crystal structures of the cadmium halide bis(thiourea) complexes. As far as we know, only the lattice parameters and space groups have been reported for the structures of the bis(thiourea)cadmium bromide and iodide (Durski *et al.*, 1975), while for CdCl₂.2thiourea, a new refinement of the crystal structure has now confirmed the results of the analysis carried out 40 years ago using two-dimensional projections (Nardelli *et al.*, 1957), giving more accurate structural data, as required for a comparison with the other halide derivatives.

The crystal structures of the three compounds can be described as being made up of discrete complex molecules formed by Cd-centred coordination tetrahedra, each with two S atoms from two thiourea molecules and two halogens at the apices (Figs. 1, 2 and 3). The orientation of the thiourea ligands, defined by the X— Cd-S-C and Cd-S-C-N torsion angles, is determined by intramolecular $N - H \cdots X$ hydrogen-bonding interactions. In the chlorine and bromine derivatives, the crystallographic mirror symmetry imposes a symmetric orientation on the two thiourea ligands in each complex, and the X1--Cd-S--C $[78.5(1)^{\circ}$ for (I) and $-78.7(3)^{\circ}$ for (II)] and X2—Cd—S—C [$-30.9(1)^{\circ}$ for (I) and $29.7(3)^{\circ}$ for (II)] torsion angles have opposite signs and are approximately equal. In contrast, in the iodine derivative, the local mirror symmetry is destroyed by the orientation of the thiourea, which is remarkably different in the two halves of the molecule, as shown by the values of the pairs of torsion angles I1-Cd-S2-C2 $[-77.3(3)^{\circ}]$ and I2—Cd—S2—C2 $[43.3(3)^{\circ}]$, and Cd-S1-C1-N11 [12.5 (8)°] and Cd-S2-C2-N22 $[-43.9(7)^{\circ}]$. This is a consequence of the larger size of the iodine ligands, resulting in much larger N—H $\cdots X$ intramolecular contacts for iodine than for bromine and chlorine; $H2B \cdots Cl2 = 2.40$, $H2B \cdots Br2 = 2.53$ and $H22B \cdot \cdot \cdot I2 = 3.00 \text{ Å}.$

Fig. 1. ORTEP (Johnson, 1965) drawing of a molecule of (I). Ellipsoids are at the 50% probability level.

Fig. 2. ORTEP (Johnson, 1965) drawing of a molecule of (II). Ellipsoids are at the 50% probability level.

Fig. 3. ORTEP (Johnson, 1965) drawing of a molecule of (III). Ellipsoids are at the 50% probability level.

The tetrahedra in the three structures are distorted, with quadratic elongation values (Robinson *et al.*, 1971), based on the lengths of the edges, of 1.0028, 1.0016 and 1.0013, for (I), (II) and (III), respectively. No regular trend is observed for the displacements of the Cd atoms from the tetrahedra centroids, which are 0.236 (1), 0.279 (3) and 0.092 (2) Å, for (I), (II) and (III), respectively. As expected, the volumes of the tetrahedra increase with increasing size of the halogen, from 8.05 Å³ for (I) to 8.67 Å³ for (II) and 9.52 Å³ for (II).

The Cd—S distances [average 2.522 (4) Å] agree with the sum (2.52 Å) of the single-bond covalent radii (Pauling, 1960), indicating a fairly strong covalent interaction. The same applies to the Cd—X distances, which increase linearly with the size of the halogen and compare well with the sum of the single-bond covalent radii [2.47, 2.62 and 2.81 Å, for Cd—Cl, Cd—Br and Cd—I, respectively (Pauling, 1960)] and with the CSD average data quoted by Orpen et al. (1989) [2.50(9), 2.61(6) and 2.75(8) for the same sequence]. The average C-S and C-N distances [1.713 (3) and 1.314 (3) Å, respectively] of the thiourea molecules agree well with the CSD values [1.725(19) and 1.322 (16) Å] for terminally coordinated thiourea (Orpen et al., 1989), which are respectively longer and shorter than the CSD values for uncoordinated thiourea [1.68 (2) and 1.35 (2) Å; Allen et al., 1987], the variation probably being caused by the coordination to metal.

The Cd—S—C angles, ranging from 105.5(2) to 111.3 (3)°, correspond well with those usually found ' Refinement in metal-thiourea complexes. Worthy of note is the systematic asymmetry of the two S-C-N angles, whose ranges are $117.6(1)-119.1(8)^{\circ}$ for the smaller and $122.3(6)-124.1(7)^{\circ}$ for the larger, the latter involving the N atom participating in the stronger N—H $\cdots X$ interactions.

In conclusion, comparison of the structural data of -^H bis(thiourea) compounds of cadmium halides shows that: (i) the crystals are not isostructural, with the crystals containing Cl⁻ or Br⁻ ions showing higher symmetry than that containing I^- (Durski *et al.*, 1975); (ii) the average Cd - X distances are in the sequence Cd—I 2.782(1) Å > Cd—Br 2.655(3) Å > Cd—Cl 2.541 (1) Å, as expected; (iii) the average Cd-S distances in the three compounds are not significantly different, showing that the size and electronegativity of the halogen do not influence the metal-thiourea interaction; (iv) as expected, the volumes of the tetrahedra follow the sequence of the halogen radii; (v) the distortion of the cadmium coordination tetrahedra follows a reverse relation.

Experimental

Single crystals of the title compounds $[CdBr_2{SC(NH_2)_2}_2]$ and $[CdI_2{SC(NH_2)_2}]$ were grown by slow evaporation of aqueous solutions containing the cadmium halide and thiourea in the ratio 1:2. The crystals of $[CdI_2{SC(NH_2)_2}_2]$ were obtained as described by Nardelli et al. (1956).

Compound (I)

Crystal data

 $[CdCl_2(CH_4N_2S)_2]$ Mo $K\alpha$ radiation $M_r = 335.54$ $\lambda = 0.71073 \text{ Å}$ Orthorhombic Cell parameters from 30 $Pmn2_1$ reflections a = 13.148(5) Å $\theta = 11.82 - 17.74^{\circ}$ $\mu = 3.091 \text{ mm}^{-1}$ b = 5.834(1) Å c = 6.501 (2) ÅT = 293 (2) K $V = 498.7 (3) \text{ Å}^3$ Prism Z = 2 $0.39 \times 0.22 \times 0.19$ mm $D_x = 2.235 \text{ Mg m}^{-3}$ Colourless $D_m = 2.320 \text{ Mg m}^{-3}$ D_m measured by flotation (Nardelli et al., 1956)

Data collection

Philips PW1100 diffractom-	1127 reflections with
eter	$I > 2\sigma(I)$
ω -2 θ scans	$R_{\rm int} = 0.023$
Absorption correction:	$\theta_{\rm max} = 35^{\circ}$
ψ scan (North <i>et al.</i> ,	$h = -21 \rightarrow 21$
1968)	$k = -9 \rightarrow 9$
$T_{\rm min} = 0.443, T_{\rm max} = 0.556$	$l = 0 \rightarrow 10$
4176 measured reflections	2 standard reflections
1198 independent reflections	every 100 reflections

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.018$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.043$	1993)
5 = 1.053	Extinction coefficient:
198 reflections	0.127 (4)
56 parameters	Scattering factors from
H atoms constrained	International Tables for
$v = 1/[\sigma^2(F_o^2) + (0.0682P)^2]$	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure: Flack
$(\Delta/\sigma)_{\rm max} < 0.001$	(1983)
$\Delta \rho_{\rm max} = 1.059 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = $0.02(2)$
(1.54 Å from Cd)	
$\Delta \rho_{\rm min} = -2.135 \ {\rm e} \ {\rm \AA}^{-3}$	
(0.75 Å from Cl1)	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (I)

	U_{eq}	$=(1/3)\Sigma_i\Sigma_jU^i$	$a^{\prime}a^{\prime}a_{i}a_{j}$.	
	x	y	z	U_{eq}
Cd	0	-0.26403(3)	0.00312 (3)	0.0256(1)
S	-0.17216 (3)	-0.1197(1)	0.1121(1)	0.0297(1)
CII	0	-0.2423(1)	-0.3890(1)	0.0295(2)
Cl2	0	-0.6899(1)	0.0759(2)	0.0397 (2)
С	-0.2616(1)	-0.3318 (3)	0.0785 (3)	0.0218 (4)
N1	-0.3582(2)	-0.2690(3)	0.0682 (6)	0.043(1)
N2	-0.2398(1)	-0.5524(3)	0.0678 (3)	0.0296 (4)

Table 2. Selected geometric parameters $(Å, \circ)$ for (1)

Cd—S	2.517(1)	S—C	1.721 (2)
Cd—Cl1	2.553(1)	C—N1	1.323 (3)
Cd—Cl2	2.529(1)	C—N2	1.321 (3)
Cl1CdS	105.34 (2)	Cd—S—C	109.8 (1)
Cl2CdS	106.02 (1)	S—C—N1	117.6 (1)
Cl1CdCl2	103.63 (3)	S—C—N2	124.0 (2)
SCdS ⁱ	128.14 (2)	N1—C—N2	118.4 (2)
Cl1CdSC Cl2CdSC CdSCN1	78.5 (1) -30.9 (1) -160.2 (2)	Cd—SC—N2 S'Cd—SC	21.6 (2) -157.1 (1)

Symmetry code: (i) -x, y, z.

Table 3. Hydrogen-bonding geometry $(Å, \circ)$ for (1)

D — $H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = H \cdots A$
N2—H2B· · · Cl2	0.86	2.40	3.254 (2)	175
$N2 - H2A \cdot \cdot \cdot C11^{i}$	0.86	2.89	3.636 (2)	147
N1-H1A···CI1'	0.86	2.60	3.418 (2)	158
N1—H1 <i>B</i> · · ·Cl1"	0.86	2.72	3.529 (2)	157
Symmetry codes: (i) $-\frac{1}{2} - x$, $-1 - y$, $\frac{1}{2} + z$; (ii) $-\frac{1}{2} - x$, $-y$, $\frac{1}{2} + z$.				

intensity decay: none

Compound (II)

Crystal data $[CdBr_2(CH_4N_2S)_2]$ $M_r = 424.46$ Orthorhombic Pnam a = 13.052 (18) Åb = 5.9892 (19) Åc = 13.542 (3) Å V = 1059 (2) Å³ Z = 4 $D_x = 2.663 \text{ Mg m}^{-3}$ D_m not measured Data collection

Nonius CAD-4 diffractom-
eter
ω -2 θ scan
Absorption correction:
XABS2 (Parkin et al.,
1995)
$T_{\rm min} = 0.027, T_{\rm max} = 0.139$
1896 measured reflections
1896 independent reflections

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.055$	$\Delta \rho_{\rm max} = 2.086 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.191$	(1.28 Å from Br2)
S = 1.095	$\Delta \rho_{\rm min} = -1.777 \ {\rm e} \ {\rm \AA}^{-3}$
1896 reflections	(1.56 Å from H12A)
55 parameters	Extinction correction: none
H atoms constrained	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0921P)^2]$	International Tables for
+ 4.8853P]	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (II)

U_{eq}	$= (1/3) \sum_i \sum_j U^{ij}$	$a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j$.	
x	у	Z	$U_{\rm eq}$
0.3441(1)	0.2187 (2)	3/4	0.0308 (3)
0.1395(1)	0.2428 (2)	3/4	0.0359 (3)
0.3779(1)	-0.2154 (2)	3/4	0.0460 (4)
0.3960(2)	0.3659 (4)	0.5828(2)	0.0392 (6)
0.3798 (6)	0.170(2)	0.4935 (6)	0.043 (2)
0.3841 (8)	0.230(2)	0.4012(7)	0.043 (2)
0.3647 (7)	-0.048 (2)	0.5115(6)	0.046 (2)
	U _{eq} x 0.3441 (1) 0.1395 (1) 0.3779 (1) 0.3960 (2) 0.3798 (6) 0.3841 (8) 0.3647 (7)	$U_{eq} = (1/3)\sum_i \sum_j U^{ij}$ $x y$ 0.3441 (1) 0.2187 (2) 0.1395 (1) 0.2428 (2) 0.3779 (1) -0.2154 (2) 0.3960 (2) 0.3659 (4) 0.3798 (6) 0.170 (2) 0.3841 (8) 0.230 (2) 0.3647 (7) -0.048 (2)	$U_{eq} = (1/3) \sum_{i} \sum_{j} U^{ij} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5. Selected geometric parameters (Å, °) for (11)

Cd—S	2.522 (2)	S—C	1.698 (10)	
Cd—Br1	2.674 (4)	C-N1	1.302 (13)	
Cd—Br2	2.636 (2)	CN2	1.343 (17)	
Br1—Cd—S	104.42 (7)	Cd—S—C	111.3 (3)	
Br2—Cd—S	107.53 (6)	N1—C—S	119.1 (8)	
Br1-Cd-Br2	102.48 (6)	N2—C—S	124.1 (7)	
S—Cd—Sʻ	127.7(1)	N1-C-N2	116.8 (9)	
BrI—Cd—S—C	-78.7 (3)	Cd—S—C—N2	- 14.5 (9)	
Br2—Cd—S—C	29.7 (3)	S'—Cd—S—C	159.8 (3)	
Cd—S—C—N1	167.1 (8)			
Symmetry code: (i) $x, y, \frac{3}{2} - z$.				

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\lambda = 20^{\circ}$	$\begin{array}{cccc} D & - H \cdots A & D H \\ N2 - H2B \cdots Br2 & 0.86 \\ N1 - H1A \cdots Br1^{i} & 0.93 \\ \text{Symmetry code: (i) } \frac{1}{2} - x, y - \frac{1}{2}, \end{array}$	$H \cdots A$ 2.53 2.67 $z = \frac{1}{2}.$
$\theta = 15-20^{\circ}$ $\mu = 9.956 \text{ mm}^{-1}$ T = 293 (2) K Tabular $0.429 \times 0.198 \times 0.198 \text{ mm}$	Compound (III) Crystal data $[CdI_2(CH_4N_2S)_2]$ $M_r = 518.44$	Μc λ =
Pale yellow	Monoclinic $P2_1/c$ a = 10.481 (2) Å	Ce $\theta =$
1079 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$	b = 7.640 (2) A c = 15.133 (4) Å $\beta = 91.00 (2)^{\circ}$ $V = 1211 (5) Å^{3}$	$\mu = T = Tal$
$\theta_{\max} = 31.97^{\circ}$ $h = 0 \longrightarrow 19$ $k = 0 \longrightarrow 8$ $l = 0 \longrightarrow 20$	$V = 1211.6 (5) A^{-1}$ Z = 4 $D_x = 2.842 \text{ Mg m}^{-3}$ $D_m \text{ not measured}$	Pal
3 standard reflections every 200 reflections intensity decay: 3.9%	Data collection Nonius CAD-4 diffractom-	23
	$\omega - 2\theta$ scans	Rin

Absorption correction: XABS2 (Parkin et al., 1995) $T_{\rm min} = 0.117, T_{\rm max} = 0.240$ 4200 measured reflections

4200 independent reflections

Refinement

CdS1 **S**2 П 12 CI NII N12 C2 N21 N22

$(\Delta/\sigma)_{\rm max} = 0.100$
$\Delta \rho_{\rm max} = 1.280 \ {\rm e} \ {\rm \AA}^{-3}$
(1.29 Å from Cd)
$\Delta \rho_{\rm min} = -3.751 \ {\rm e} \ {\rm \AA}^{-3}$
(0.03 Å from I2)
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 6. Hydrogen-bonding geometry (Å, °) for (11)

 $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$

 $D \cdot \cdot \cdot A$

3.386 (9)

Mo $K\alpha$ radiation

Cell parameters from 25

0.231 \times 0.198 \times 0.198 mm

2350 reflections with

3 standard reflections

every 200 reflections

intensity decay: 3.9%

 $l > 2\sigma(l)$ $R_{\rm int} = 0.030$

 $\theta_{\rm max} = 31.96^{\circ}$

 $k = 0 \rightarrow 11$

 $l = 0 \rightarrow 22$

 $h = -15 \rightarrow 15$

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 15 - 18^{\circ}$

 $\mu = 7.200 \text{ mm}^{-1}$

T = 293 (2) K

Tabular

Pale rose

3.578(11)

 $D = H \cdot \cdot \cdot A$

172

165

Table 7. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (III)

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j.$						
x	у		U_{eq}			
0.22442 (5)	-0.01472 (7)	0.11244 (4)	0.0388 (2)			
0.0608 (2)	0.0274 (3)	0.2322(1)	0.0409 (4)			
0.1302 (2)	0.1180(3)	-0.0260(1)	0.0464 (5)			
0.28029 (5)	-0.36598 (7)	0.08636 (4)	0.0449 (2)			
0.44902 (4)	0.14257 (7)	0.17352 (4)	0.0429 (2)			
0.1205 (7)	-0.0716 (9)	0.3252 (5)	0.036(2)			
0.2377 (7)	-0.124(1)	0.3346 (5)	0.066(2)			
0.0432 (7)	-0.095(1)	0.3918 (4)	0.056(2)			
0.2576 (6)	0.153(1)	-0.0947 (4)	0.033(1)			
0.2435 (6)	0.109(1)	-0.1777 (4)	0.050(2)			
0.3652 (6)	0.219(1)	-0.0661(5)	0.050(2)			

Cd-II	2.777 (1)	Cd—S2	2.514 (2)
Cd—I2	2.786(1)	S1—C1	1.707 (8)
Cd—S1	2.538 (2)	S2—C2	1.727 (7)
[1—Cd—S1	111.78 (5)	Cd—S2—C2	105.5 (2)
11—Cd—S2	110.62 (6)	S1—C1—N11	124.0 (6)
I2—Cd—S1	106.62(5)	S1-C1-N12	118.0 (6)
I2—Cd—S2	114.82 (5)	S2—C2—N21	117.6 (6)
11—Cd—I2	106.56(3)	S2—C2—N22	122.3 (6)
S1-Cd-S2	106.47 (6)	N11-C1-N12	117.9 (7)
Cd—S1—C1	106.8 (3)	N21—C2—N22	120.1 (6)
11—Cd—S1—C1	56.2 (3)	Cd—S1—C1—N12	- 168.0 (6)
11—Cd—S2—C2	-77.3 (3)	Cd—S2—C2—N21	135.5 (6)
I2-Cd-S1-C1	-59.8(3)	Cd-S2-C2-N22	-43.9(7)
I2—Cd—S2—C2	43.3 (3)	S2—Cd—S1—C1	177.1 (3)
Cd-S1-C1-N11	12.5 (8)	S1—Cd—S2—C2	161.0 (3)

Table 8. Selected geometric parameters (Å, °) for (III)

Table 9. Hydrogen-bonding geometry (Å, °) for (III)

D — $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	D—H	H. · ·A	$D \cdot \cdot \cdot A$	D—H···A			
N22—H22 <i>B</i> ····12	0.86	3.00	3.762 (8)	148			
$N21 - H21A \cdot \cdot \cdot I2^{1}$	0.86	2.91	3.672 (7)	148			
Symmetry code: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$.							

The structures of (II) and (III) were solved by direct and Fourier methods, and refined anisotropically by full-matrix least squares. Refinement of (I) was carried out starting from the coordinates published by Nardelli *et al.* (1957). The H atoms of all three compounds were placed in calculated positions riding on the attached N_{sp2} atoms, with isotropic displacement parameters 1.5 times those of the N atoms.

Data collection: local programs for (I); CAD-4 EXPRESS (Enraf–Nonius, 1994) for (II) and (III). Cell refinement: local programs for (I); DIRDIF (Beurskens et al., 1992) for (II) and (III). Data reduction: local programs for (I); REFLEX (local program) for (II) and (III). For all compounds, program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: Xtal_GX (Hall & du Boulay, 1995); software used to prepare material for publication: SHELXL93; geometrical calculations: PARST (Nardelli, 1983).

We thank DGICYT for support (PB96-0556).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1330). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. & Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187–204.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report of the Crystallographic Laboratory, University of Nijmegen, The Netherlands.
- Durski, Z., Boniuk, H. & Majorowski, S. (1975). Rocz. Chem. 49, 2101–2104.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

- Hall, S. R. & du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nardelli, M., Cavalca, L. & Braibanti, A. (1956). Gazz. Chim. Ital. 86, 1037-1044.
- Nardelli, M., Cavalca, L. & Braibanti, A. (1957). Gazz. Chim. Ital. 87, 137-145.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Tavlor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.
- Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.
- Pauling, L. (1960). In *The Nature of the Chemical Bond*, 3rd ed. Ithaca, New York: Cornell University Press.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.
- Sheldrick, G. M. (1990). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoev, M. & Ruseva, S. (1994). Monatsh. Chem. 125, 599-606.

Acta Cryst. (1998). C54, 1229-1233

Tetrabutylammonium and Caesium Salts of Trinitromethane

Jeffrey C. Bryan, Michael N. Burnett and Andrei A. Gakh

Chemical and Analytical Sciences Division, Oak Ridge National Laboratory. Oak Ridge. TN 37831. USA. E-mail: bryanjc@ornl.gov

(Received 12 January 1998; accepted 24 March 1998)

Abstract

Two structures of the trinitromethane anion are reported. In tetra-*n*-butylammonium trinitromethanide, $(C_4H_9)_4N^+.[C(NO_2)_3]^-$, the $[C(NO_2)_3]^-$ anion adopts the commonly observed $C_{2\nu}$ conformation, while in the Cs salt, caesium trinitromethanide, Cs⁺. $[C(NO_2)_3]^-$, it adopts a distorted propeller conformation. Both stuctures exhibit cation-anion interactions that may influence the structure of the anion.

Comment

Trinitromethane and its salts have been known for almost 100 years, and are the subject of several structure-related publications, including an *ab initio* study predicting a propeller-type structure (D_3 , Fig. 1a) for the anion (Cioslowski *et al.*, 1991). This computed